
Page 1 of 4

https://pytch.org/
info@pytch.org

Trick-or-treat game

Open starting project
This workshop started with a Pytch team member guiding participants through the first few
stages of making this game. These instructions pick up from the end of that segment. You can
start with the following link, which will open the project after the guided segment’s work, ready
for the tasks on this worksheet:

• https://www.pytch.org/app/suggested-demo/workshops/trick-or-treat-1

Click the “Demo” button once this link has opened.

Finish making the game
There are a few missing pieces before this is a playable game. See how you get on more
independently with these tasks:

Task 1 part 1 (Stage)
Problem: The player can see their “score” on the screen, but not their “lives”.

Look in the Stage’s code where we created the score variable with value 0 and we wrote the line
to show it on the Stage — this is where you’ll need to make changes.

You need to create a lives variable as we did with the score and give it an initial value, for
example the value 3. Then you want to show it on the Stage.

To also show the lives variable with the score one, you can use code very similar to the

pytch.show_variable(Stage, "score", right=236)

line we wrote earlier. The code right=236 puts the score display at the top-right corner of the
screen. You can leave out the highlighted part altogether to put the display at the top-left of the
screen.

Add your new code for lives underneath the existing line for score.

https://www.pytch.org/app/suggested-demo/workshops/trick-or-treat-1

Page 2 of 4

Task 1 part 2 (Sprite)
Problem: the lives at the moment are not used to check whether the game still needs to
keep going. The game carries on forever, but we want it to keep going only when lives are
bigger than zero.

In your current program, the lives variable is always 3, but you will soon develop some code to
make the player lose lives too. So, you need your existing code to be ready for this. In the
sprite’s “play-game” script, the code currently runs forever, using a while True loop. You need
to change this loop into something where your code runs only when lives are bigger than 0. The
help to the left of the Code pane will help you find the Python code you need for this with an
example you can adapt to your case — look in the Control section for the Repeat until help.

Task 2 (Sprite)
Problem: The sprites are all candies we want to collect, and never ghosts we don’t want to
touch. (We want that to be random.)

Look in the Sprite’s code where we added the line to always switch the costume to the first one
(0) — this is where you’ll need to make changes.

Look in the Costumes tab to see what “costumes” the sprite has. Each sprite can “wear” any
one of these costumes.

To start with, change the 0 to a 1 in the

self.switch_costume(0)

code, then click the green play button, to see what that number does. Looking in the Costumes
tab, Python counts list positions from zero, so “costume 0” is the first one, as we mentioned
before, which is the candy skull.

Now create a new variable costume_number just before the switch_costume() line:

costume_number = random.choice([0, 1])

This new line asks Python to choose randomly from a list of two numbers (0 and 1), and create a
variable costume_number to refer to the result. Use this variable instead of the constant 0 in
self.switch_costume(0), to get a random mixture of candies and ghosts.

Task 3 (Sprite)
Problem: All the sprites move at the same speed.

Look in the sprite’s code for this line:

self.glide_to_xy(self.x_position, 200, 4.0)

The “4.0” means how long (4 seconds) to take to glide up the screen. Instead of always taking 4
seconds, we want to take a random amount of time between, say, 3.0 seconds and 5.0
seconds, including numbers with a fraction part. (continued on next page)

Page 3 of 4

The Python function

random.uniform(lowest, highest)

will choose a random number like this for you. Instead of lowest and highest, you’ll type actual
numbers. Create a new variable glide_time for this random value, and change the
self.glide_to_xy() line to use this glide_time variable.

Task 4 part 1 (Sprite)
Problem: Nothing happens when the player collects a ghost.

Look for the Sprite’s “when clicked” script. Under where the code says

pass

you can write some code which runs when the player clicks a ghost. Your code needs to do two
things, as follows. Test the game after you’ve done each one.

First: Subtract 1 from the variable Stage.lives. You can use code very similar to the line

Stage.score += 10

— recall that this line adds 10 to the variable Stage.score.

Second: Check if the value of Stage.lives is now zero. You’ll use an if statement — there’s an
example at the top of the script. If Stage.lives is zero, that's game over, and we want to
“broadcast a message” to all the sprite clones, so they hide themselves straight away. Look in
the Stage’s code for an example of how broadcasts work, and add code to broadcast a
message like “game-over”.

Task 4 part 2 (Sprite)
Problem: The other sprites don’t immediately vanish when the game is over.

We want each sprite to hide itself when it receives the message broadcast by the code you
wrote in the previous task. So we need a new script that hides the sprites when it receives the
message “game-over” (or the message string you used, if different).

Task 5 (Sprite)
Problem: The game would look better if the tricks or treats gradually vanished.

For this you’ll need to make changes in the script where you programmed what happens when
the sprite is clicked. Just before the self.hide() line, we would like to add a short animation to
make the tricks or treats gradually shrink away.

You can make your own animation; for example, we can use self.set_size(size) to make the
sprite smaller. You can set the sprite to a smaller size and then wait a short time before
reducing the size again. Note: you can do this by copying and pasting your code, but if you have
time, think about how to avoid the repetitive code. (continued on next page)

Page 4 of 4

The help to the left of the Code pane will help you find the Python code you need for waiting —
look in the Control section — and you can also find more information on self.set_size(size) —
this is in the Looks section.

You’ll need to make the sprite full size again when it starts its next glide up the screen.

Customise the game
Try some of these suggestions, or work on your own ideas!

• Add a witch which is worth 50 points. The sprite already has a costume for this. Or you
can use an image from the web instead. You need to think about how to make a witch
appear, and how to make it behave correctly when it’s clicked.

• Lose points if you miss the sprite (i.e., if you click on the Stage instead).
• Make the witch rarer than the other two sprites.
• Add some left-to-right randomness to where the sprites start.
• Make the candies and ghosts rotate back and forth as they glide up the screen.
• Lose a life if you don’t collect the candy before it reaches the top of the screen.
• Make more clones.
• Find different images on the web for the sprite’s costumes. You can add costumes to

the sprite with the button at the bottom of the

 tab.

Compare to our version
This link will open the project with all tasks (but not the challenges) completed:

• https://www.pytch.org/app/suggested-demo/workshops/trick-or-treat-2

This is our own version, but of course there are many ways of personalising the project or
solving the tasks — there’s no such thing as “the right answer”. If you’ve made your own
version, please feel free to share your project or ideas with us.

Feedback
Any comments or suggestions to info@pytch.org please!

Pytch Team, 2024-11-16

https://www.pytch.org/app/suggested-demo/workshops/trick-or-treat-2
mailto:info@pytch.org

	https://pytch.org/
	info@pytch.org
	Open starting project
	Finish making the game
	Task 1 part 1 (Stage)
	Task 1 part 2 (Sprite)
	Task 2 (Sprite)
	Task 3 (Sprite)
	Task 4 part 1 (Sprite)
	Task 4 part 2 (Sprite)
	Task 5 (Sprite)

	Customise the game
	Compare to our version
	Feedback

